Featured Products
- Adipose Tissue-Derived Stem Cells
- Human Neurons
- Mouse Probe
- Whole Chromosome Painting Probes
- Hepatic Cells
- Renal Cells
- In Vitro ADME Kits
- Tissue Microarray
- Tissue Blocks
- Tissue Sections
- FFPE Cell Pellet
- Probe
- Centromere Probes
- Telomere Probes
- Satellite Enumeration Probes
- Subtelomere Specific Probes
- Bacterial Probes
- ISH/FISH Probes
- Exosome Isolation Kit
- Human Adult Stem Cells
- Mouse Stem Cells
- iPSCs
- Mouse Embryonic Stem Cells
- iPSC Differentiation Kits
- Mesenchymal Stem Cells
- Immortalized Human Cells
- Immortalized Murine Cells
- Cell Immortalization Kit
- Adipose Cells
- Cardiac Cells
- Dermal Cells
- Epidermal Cells
- Peripheral Blood Mononuclear Cells
- Umbilical Cord Cells
- Monkey Primary Cells
- Mouse Primary Cells
- Breast Tumor Cells
- Colorectal Tumor Cells
- Esophageal Tumor Cells
- Lung Tumor Cells
- Leukemia/Lymphoma/Myeloma Cells
- Ovarian Tumor Cells
- Pancreatic Tumor Cells
- Mouse Tumor Cells
Our Promise to You
Guaranteed product quality, expert customer support
Molecular Analysis of a Recurrent Sarcoma Identifies a Mutation in FAF
The Sarcoma, 2015, 2015.
Molecular Analysis of a Recurrent Sarcoma Identifies a Mutation in FAF
Authors: Weber G F.
http://dx.doi.org/10.1155/2015/839182
http://dx.doi.org/10.1155/2015/839182
Abstract
A patient presented with a recurrent sarcoma (diagnosed as leiomyosarcoma) 12 years after the removal of an initial cancer (diagnosed as extracompartmental osteosarcoma) distally on the same limb. Following surgery, the sarcoma and unaffected muscle and bone were subjected to measurements of DNA exome sequence, RNA and protein expression, and transcription factor binding. The investigation provided corroboration of the diagnosis leiomyosarcoma, as the major upregulations in this tumor comprise muscle-specific gene products and calcium-regulating molecules (calcium is an important second messenger in smooth muscle cells). A likely culprit for the disease is the point mutation S181G in FAF1, which may cause a loss of apoptotic function consecutive to transforming DNA damage. The RNA levels of genes for drug transport and metabolism were extensively skewed in the tumor tissue as compared to muscle and bone. The results suggest that the tumor represents a recurrence of a dormant metastasis from an originally misdiagnosed neoplasm. A loss of FAF1 function could cause constitutive WNT pathway activity (consistent with the downstream inductions of IGF2BP1 and E2F1 in this cancer). While the study has informed on drug transport and drug metabolism pharmacogenetics, it has fallen short of identifying a suitable target for molecular therapy.