Featured Products
- Adipose Tissue-Derived Stem Cells
- Human Neurons
- Mouse Probe
- Whole Chromosome Painting Probes
- Hepatic Cells
- Renal Cells
- In Vitro ADME Kits
- Tissue Microarray
- Tissue Blocks
- Tissue Sections
- FFPE Cell Pellet
- Probe
- Centromere Probes
- Telomere Probes
- Satellite Enumeration Probes
- Subtelomere Specific Probes
- Bacterial Probes
- ISH/FISH Probes
- Exosome Isolation Kit
- Human Adult Stem Cells
- Mouse Stem Cells
- iPSCs
- Mouse Embryonic Stem Cells
- iPSC Differentiation Kits
- Mesenchymal Stem Cells
- Immortalized Human Cells
- Immortalized Murine Cells
- Cell Immortalization Kit
- Adipose Cells
- Cardiac Cells
- Dermal Cells
- Epidermal Cells
- Peripheral Blood Mononuclear Cells
- Umbilical Cord Cells
- Monkey Primary Cells
- Mouse Primary Cells
- Breast Tumor Cells
- Colorectal Tumor Cells
- Esophageal Tumor Cells
- Lung Tumor Cells
- Leukemia/Lymphoma/Myeloma Cells
- Ovarian Tumor Cells
- Pancreatic Tumor Cells
- Mouse Tumor Cells
Our Promise to You
Guaranteed product quality, expert customer support
Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering
The Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2017, 105(3): 616-627.
Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering
Authors: Wu Y, Wang Z, Ying Hsi Fuh J, et al.
PMID: 26671608
PMID: 26671608
Abstract
Tissue engineering (TE) offers a promising strategy to restore diseased tendon tissue. However, a suitable scaffold for tendon TE has not been achieved with current fabrication techniques. Herein, we report the development of a novel electrohydrodynamic jet printing (E-jetting) for engineering 3D tendon scaffold with high porosity and orientated micrometer-size fibers. The E-jetted scaffold comprised tubular multilayered micrometer-size fibrous bundles, with interconnected spacing and geometric anisotropy along the longitudinal direction of the scaffold. Fiber diameter, stacking pattern, and interfiber distance have been observed to affect the structural stability of the scaffold, of which the enhanced mechanical strength can be obtained for scaffolds with thick fibers as the supporting layer. Human tenocytes showed a significant increase in cellular metabolism on the E-jetted scaffolds as compared to that on conventional electrospun scaffolds (2.7-, 2.8-, and 3.1-fold increase for 150, 300, and 600 µm interfiber distance, respectively; p < 0.05). Furthermore, the scaffolds provided structural support for human tenocytes to align with controlled orientation along the longitudinal direction of the scaffold, and promoted the expression of collagen type I. For the first time, E-jetting has been explored as a novel scaffolding approach for tendon TE, and offers a 3D fibrous scaffold to promote organized tissue reconstruction for potential tendon healing.