Serial Sectioning Protocol
GUIDELINE
- Serial sectioning is the procedure of collecting and mounting sections on a slide in the sequential order in which they were cut on the microtome. A ribbon refers to the sequence of connected sections pulled from the microtome.
- Conventional tumor histopathological sections are generally sliced in parallel at certain interval distances, and this slicing method cannot effectively observe the growth characteristics of tumor tissue from inside to outside, and there is no continuity between individual slices, and continuous slicing to observe the three-dimensional whole tissue state cannot be realized.
- Here, a method for making continuous pathological sections of tumor tissues is provided, aiming to solve the problem that traditional tumor tissue sections are not continuous and cannot observe the growth characteristics of tumor tissues from inside to outside.
METHODS
- Pretreatment. Fresh tumor tissues from animals were selected, and the fixative was infiltrated into the interior of the tissues by injection or perfusion method, and the dehydrating agent was selected to replace the water in the fixed tissues, and the transparent agent was used for transparent treatment.
- Wax immersion and embedding. Paraffin wax is dipped into the tissue to replace the transparency agent; the wax-impregnated tissue is placed in the melted solid paraffin wax, and after the paraffin wax solidifies, the tissue is embedded to form a wax block.
- Slicing. After trimming the wax block, the block is fixed and sliced using a vertical slicer or a circular slicer in concentric circles or in a spiral trajectory at any point along the outer edge surface of the block.
- Spreading of slices. The slices obtained in the previous step were divided into different samples, and after the samples were numbered, the samples were laid flat on the surface of water at 40-45°C, and the slightly wrinkled samples were spreading naturally by the tension of water and the temperature of water.
- Patching and baking. Place the samples on the slides sequentially according to the number and bake the slides to remove the remaining water.
NOTES
- The slicing knife must be sharp, with even force and slicing thickness of 3-5 microns. The slices are intact and free of contamination and wrinkles.
- Large and small specimens must be handled separately, and the fixation time of large specimens must not be less than 6 hours; small specimens must not be less than 3 hours. The fixation solution must be replaced in time and must be rinsed under running water after fixation.
- Gastroscopy, puncture and other small biopsy tissue sections must be made in continuous sections of not less than 8.
RELATED PRODUCTS & SERVICES
For research use only. Not for any other purpose.
Resources
- FAQ
- Protocol
- Cell Culture Guide
- Technical Bulletins
-
Explore & Learn
-
Cell Biology
- How to Handle Mycoplasma in Cell Culture?
- Enrichment, Isolation and Characterization of Circulating Tumor Cells (CTCs)
- Strategies for Enrichment of Circulating Tumor Cells (CTCs)
- How to Assess the Migratory and Invasive Capacity of Cells?
- STR Profiling—The ID Card of Cell Line
- Comparison of Several Techniques for the Detection of Apoptotic Cells
- Tips For Cell Cryopreservation
- What Cell Lines Are Commonly Used in Biopharmaceutical Production?
- T Cell Activation and Expansion
- How to Isolate PBMCs from Whole Blood?
- CHO Cell Line Development
- How to Isolate and Analyze Tumor-Infiltrating Leukocytes?
- Generation and Applications of Neural Stem Cells
- Stem Cell Markers
- Troubleshooting Cell Culture Contamination: A Comprehensive Guide
- Comparison of the MSCs from Different Sources
- What are the Differences Between M1 and M2 Macrophages?
- Quantification of Cytokines
- Organoid Differentiation from Induced Pluripotent Stem Cells
- Multi-Differentiation of Peripheral Blood Mononuclear Cells
- Mesenchymal Stem Cells: A Comprehensive Exploration
- IL-12 Family Cytokines and Their Immune Functions
- What are Mesothelial Cells?
- How to Scale Up Single-Cell Clones?
- Biomarkers and Signaling Pathways in Tumor Stem Cells
- Techniques for Cell Separation
- Contamination of Cell Cultures & Treatment
- Cell Culture Medium
- What Are Myeloid Cell Markers?
- Cryopreservation of Cells Step by Step
- Cell Cryopreservation Techniques and Practices
- Human Primary Cells: Definition, Assay, Applications
- How to Eliminate Mycoplasma From Cell Cultures?
- Critical Quality Attributes and Assays for Induced Pluripotent Stem Cells
- T Cell, NK Cell Differentiation from Induced Pluripotent Stem Cells
- Major Problems Caused by the Use of Uncharacterized Cell Lines
- Direct vs. Indirect Cell-Based ELISA
- What Is Cell Proliferation and How to Analyze It?
- Unveiling the Molecular Secrets of Adipogenesis in MSCs
- How to Decide Between 2D and 3D Cell Cultures?
- Isolation, Expansion, and Analysis of Natural Killer Cells
- Neural Differentiation from Induced Pluripotent Stem Cells
- Tumor Stem Cells: Identification, Isolation and Therapeutic Interventions
- Guidelines for Cell Banking to Ensure the Safety of Biologics
- Monocytes vs. Macrophages
- How to Detect and Remove Endotoxins in Biologics?
- Comparison of Different Methods to Measure Cell Viability
- What are PBMCs?
- Circulating Tumor Cells as Cancer Biomarkers in the Clinic
- CFU Assay for Hematopoietic Cell
- How to Start Your Culture: Thawing Frozen Cells
- Optimization Strategies of Cell-Based Assays
- Immunogenicity Testing: ELISA and MSD Assays
- 3D-Cell Model in Cell-Based Assay
- Types of Cell Therapy for Cancer
- From Collection to Cure: How ACT Works in Cancer Immunotherapy
- How to Maximize Efficiency in Cell-Based High-Throughput Screening?
- Cell-Based High-Throughput Screening Techniques
- What Are CAR T Cells?
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- Understanding Immunogenicity Assays: A Comprehensive Guide
- 3D-Cell Model in Cell-Based Assay
- Role of Cell-Based Assays in Drug Discovery and Development
- Immunogenicity Testing: ELISA and MSD Assays
- Optimization Strategies of Cell-Based Assays
- What Are the Pros and Cons of Adoptive Cell Therapy?
- Adherent and Suspension Cell Culture
- Overview of Cell Apoptosis Assays
- Mastering Cell Culture and Cryopreservation: Key Strategies for Optimal Cell Viability and Stability
- Key Techniques in Primary, Immortalized and Stable Cell Line Development
- From Primary to Immortalized: Navigating Key Cell Lines in Biomedical Research
- Exploring Cell Dynamics: Migration, Invasion, Adhesion, Angiogenesis, and EMT Assays
- Cell Viability, Proliferation and Cytotoxicity Assays
-
Histology
- Multiple Animal Tissue Arrays
- Troubleshooting in Fluorescent Staining
- Tips for Choosing the Right Protease Inhibitor
- Instructions for Tumour Tissue Collection, Storage and Dissociation
- Fluorescent Nuclear Staining Dyes
- Guides for Live Cell Imaging Dyes
- Overview of the FFPE Cell Pellet Product Lines
- Immunohistochemistry Troubleshooting
- Cell and Tissue Fixation
- Cell Lysates: Composition, Properties, and Preparation
- Microscope Platforms
- Mitochondrial Staining
- Overview of Common Tracking Labels for MSCs
- How to Apply NGS Technologies to FFPE Tissues?
- Immunohistochemistry Controls
- Stains Used in Histology
- Comparison of Membrane Stains vs. Cell Surface Stains
- Comparing IHC, ICC, and IF: Which One Fits Your Research?
- Common Immunohistochemistry Stains and Their Role in Cancer Diagnosis
- How Immunohistochemistry Makes the Invisible Brain Visible?
- What You Must Know About Neuroscience IHC?
- Histological Staining Techniques: From Traditional Chemical Staining to Immunohistochemistry
- Modern Histological Techniques
- From Specimen to Slide: Core Methods in Histological Practice
-
Exosome
- How to Efficiently Utilize MSC Exosomes for Disease Treatment?
- What's the Potential of PELN in Disease Treatment?
- How to Apply Exosomes in Clinical?
- Summary of Approaches for Loading Cargo into Exosomes
- Emerging Technologies and Methodologies for Exosome Research
- Exosomes as Emerging Biomarker Tools for Diseases
- How to Enhancement Exosome Production?
- How to Label Exosomes?
- How to characterize exosomes?
- Classification, Isolation Techniques and Characterization of Exosomes
- How to Perform Targeted Modification of Exosomes?
- How do PELN Deliver Drugs?
- Current Research Status of Milk Exosomes
- Exosome Quality Control: How to Do It?
- The Role of Exosomes in Cancer
- Techniques for Exosome Quantification
- Exosome Size Measurement
- What are the Functions of Exosomal Proteins?
- Applications of MSC-EVs in Immune Regulation and Regeneration
- Unraveling Biogenesis and Composition of Exosomes
- Production of Exosomes: Human Cell Lines and Cultivation Modes
- Exosome Transfection for Altering Biomolecular Delivery
- How Important are Lipids in Exosome Composition and Biogenesis?
- Collection of Exosome Samples and Precautions
- Exosome Antibodies
- Common Techniques for Exosome Nucleic Acid Extraction
-
ISH/FISH
- ISH probe labeling method
- What Types of Multicolor FISH Probe Sets Are Available?
- Mapping of Transgenes by FISH
- Reagents Used in FISH Experiments
- Small RNA Detection by ISH Methods
- Telomere Length Measurement Methods
- Comprehensive Comparison of IHC, CISH, and FISH Techniques
- What Is the Use of FISH in Solid Tumors?
- CARD-FISH: Illuminating Microbial Diversity
- RNAscope ISH Technology
- What are the Differences between FISH, aCGH, and NGS?
- Differences Between DNA and RNA Probes
- Overview of Oligo-FISH Technology
- FISH Tips and Troubleshooting
- Comparative Genomic Hybridization and Its Applications
- In Situ Hybridization Probes
- Multiple Options for Proving Monoclonality
- FISH Techniques for Biofilm Detection
- Whole Chromosome Painting Probes for FISH
- Guidelines for the Design of FISH Probes
- Different Types of FISH Probes for Oncology Research
- How to Use FISH in Hematologic Neoplasms?
- What are Single, Dual, and Multiplex ISH?
- Overview of Common FISH Techniques
- Multiple Approaches to Karyotyping
-
Toxicokinetics & Pharmacokinetics
- Overview of In Vitro Permeability Assays
- What Are Metabolism-Mediated Drug-Drug Interactions?
- How to Improve Drug Plasma Stability?
- Experimental Methods for Identifying Drug-Drug Interactions
- Organ-on-a-Chip Systems for Drug Screening
- Pharmacokinetics Considerations for Antibody Drug Conjugates
- Key Considerations in Toxicokinetic
- Pharmacokinetics of Therapeutic Peptides
- How Is the Cytotoxicity of Drugs Determined?
- How to Improve the Pharmacokinetic Properties of Peptides?
- Toxicokinetics vs. Pharmacokinetics
- Organoids in Drug Discovery: Revolutionizing Therapeutic Research
- Methods of Parallel Artificial Membrane Permeability Assays
- How to Conduct a Bioavailability Assessment?
- Traditional vs. Novel Drug Delivery Methods
- Predictive Modeling of Metabolic Drug Toxicity
- The Rise of In Vitro Testing in Drug Development
- What Are Compartment Models in Pharmacokinetics?
- Comparison of MDCK-MDR1 and Caco-2 Cell-Based Permeability Assays
- What factors influence drug distribution?
- How to Design and Synthesize Antibody Drug Conjugates?
- Key Factors Influencing Brain Distribution of Drugs
- Effects of Cytochrome P450 Metabolism on Drug Interactions
- How to Improve Drug Distribution in the Brain
- Physical and Chemical Properties of Drugs and Calculations
- What Is the Role of the Blood-Brain Barrier in Drug Delivery?
- Parameters of Pharmacokinetics: Absorption, Distribution, Metabolism, Excretion
- What are the Pharmacokinetic Properties of the Antisense Oligonucleotides?
- Unraveling the Role of hERG Channels in Drug Safety
- What Are the Best Methods to Test Cardiotoxicity?
- Why Cardiotoxicity Matters in R&D?
-
Disease Models
- What Human Disease Models Are Available for Drug Development?
- Overview of Cardiovascular Disease Models in Drug Discovery
- Preclinical Models of Acute Liver Failure
- Summary of Advantages and Limitations of Different Oncology Animal Models
- Why Use PDX Models for Cancer Research?
- Disease Models of Diabetes Mellitus
- Animal Models of Neurodegenerative Diseases
-
Cell Biology
- Life Science Articles
- Download Center
- Trending Newsletter


