Decalcification Protocol
GUIDELINE
- Decalcification is required for processing bone tissue in routine diagnostic practice. Control of this step is crucial because it may have important consequences for establishing the diagnosis.
- Agents commonly used for decalcification are acids of varying ionic strength or chelating agents. Acids that ionize and solubilize calcium ions include strong inorganic acids, such as hydrochloric or nitric acid, and weaker organic acids such as formic or phosphoric acid. Chelating agents such as ethylenediaminetetraacetic acid (EDTA) link to calcium ions and form an insoluble complex.
METHODS
Routine Decalcification
- Make 14% EDTA solution. Add 140 g free acid EDTA to 700 ml distilled H2O. On stir plate in the fume hood, add ammonium hydroxide 30 ml at a time until solution clears (about 90 ml total). Add H2O to almost 1 L. Check pH and adjust with ammonium hydroxide dropwise up to pH 7.2, then adjust final volume to 1 L.
- Place fixed / rinsed tissue in at least 15 volumes of 14% EDTA, and change daily or 5x / week (M-F) with mixing, this means at least 15 ml for a mouse tibia / femur. Placing tissue in a screw-top tube on its side, on a rocker works well. We tape tubes into a rack and place the whole thing on its side on the rocker.

- Time of decalcification varies with tissue size, species, etc. Mouse adult long bones and vertebrae need 10-14 days, and isolated calvaria needs 2-4 days.
- Rinse in H2O x 4. For paraffin embedding, place in 30%, 50%, and 70% ETOH for at least 30 min each prior to submitting to core lab; For frozen sections, blot tissue dry and freeze in OCT.
Hurry-Up Decalcification
- Reagent preparation. We need prepare 12.6 g aluminum chloride (hydrous), 8.5 ml 10 N hydrochloric acid, 5.4 ml 88% formic acid.
- Make final volume to 100 ml. Dilute 1 part of this stock solution with 4 parts of dH2O for LM histology (or immunohistochemistry) and 1:8 for tissues being processed for EM.
- Decalcification of an entire head of a 100 g rat takes only about 5 days in this solution at 1:4 dilution. It is truly amazing how quickly it works and how reasonable the tissues look afterwards.
- We usually do the decalcification at 4°C as with EDTA (with stirring, large fluid to tissue ratio). You should change this solution daily. Wash the tissues liberally after decalcification as with EDTA.
NOTES
- The fluid volume to tissue ratio is very critical for the decalcification process. It should be as large as practical, for example, no more than 10 or 15 hemi-jaws per liter of solution.
- You should change the solution every other day, pre chill the new batch to keep temperature at 4°C at all times.
- It is important to clean away as much muscle and soft tissues from the hemi-jaw bones, excess tissues act as a barrier to the decalcification process.
RELATED PRODUCTS & SERVICES
For research use only. Not for any other purpose.
Resources
- FAQ
- Protocol
- Cell Culture Guide
- Technical Bulletins
-
Explore & Learn
-
Cell Biology
- Strategies for Enrichment of Circulating Tumor Cells (CTCs)
- Comparison of Several Techniques for the Detection of Apoptotic Cells
- STR Profiling—The ID Card of Cell Line
- Tips For Cell Cryopreservation
- How to Isolate and Analyze Tumor-Infiltrating Leukocytes?
- Comparison of the MSCs from Different Sources
- T Cell Activation and Expansion
- How to Handle Mycoplasma in Cell Culture?
- Enrichment, Isolation and Characterization of Circulating Tumor Cells (CTCs)
- How to Assess the Migratory and Invasive Capacity of Cells?
- What Cell Lines Are Commonly Used in Biopharmaceutical Production?
- Quantification of Cytokines
- Multi-Differentiation of Peripheral Blood Mononuclear Cells
- Organoid Differentiation from Induced Pluripotent Stem Cells
- Mesenchymal Stem Cells: A Comprehensive Exploration
- What are the Differences Between M1 and M2 Macrophages?
- Biomarkers and Signaling Pathways in Tumor Stem Cells
- IL-12 Family Cytokines and Their Immune Functions
- What are Mesothelial Cells?
- How to Scale Up Single-Cell Clones?
- Techniques for Cell Separation
- Contamination of Cell Cultures & Treatment
- Cell Culture Medium
- What Are Myeloid Cell Markers?
- Cryopreservation of Cells Step by Step
- Cell Cryopreservation Techniques and Practices
- Human Primary Cells: Definition, Assay, Applications
- How to Eliminate Mycoplasma From Cell Cultures?
- Critical Quality Attributes and Assays for Induced Pluripotent Stem Cells
- What Is Cell Proliferation and How to Analyze It?
- Direct vs. Indirect Cell-Based ELISA
- Major Problems Caused by the Use of Uncharacterized Cell Lines
- T Cell, NK Cell Differentiation from Induced Pluripotent Stem Cells
- Unveiling the Molecular Secrets of Adipogenesis in MSCs
- Tumor Stem Cells: Identification, Isolation and Therapeutic Interventions
- How to Decide Between 2D and 3D Cell Cultures?
- Neural Differentiation from Induced Pluripotent Stem Cells
- Isolation, Expansion, and Analysis of Natural Killer Cells
- Guidelines for Cell Banking to Ensure the Safety of Biologics
- CFU Assay for Hematopoietic Cell
- Monocytes vs. Macrophages
- How to Detect and Remove Endotoxins in Biologics?
- Comparison of Different Methods to Measure Cell Viability
- What are PBMCs?
- How to Start Your Culture: Thawing Frozen Cells
- Circulating Tumor Cells as Cancer Biomarkers in the Clinic
- Troubleshooting Cell Culture Contamination: A Comprehensive Guide
- Generation and Applications of Neural Stem Cells
- Stem Cell Markers
- How to Isolate PBMCs from Whole Blood?
- CHO Cell Line Development
- Spheroid vs. Organoid: Choosing the Right 3D Model for Your Research
- Mastering Cell Culture and Cryopreservation: Key Strategies for Optimal Cell Viability and Stability
- Adherent and Suspension Cell Culture
- How to Maximize Efficiency in Cell-Based High-Throughput Screening?
- Understanding Immunogenicity Assays: A Comprehensive Guide
- What are White Blood Cells?
- What Are the Pros and Cons of Adoptive Cell Therapy?
- Role of Cell-Based Assays in Drug Discovery and Development
- Eosinophils vs. Basophils vs. Neutrophils
- Cultivated Meat: What to Know?
- Optimization Strategies of Cell-Based Assays
- 3D-Cell Model in Cell-Based Assay
- Immunogenicity Testing: ELISA and MSD Assays
- Optimization Strategies of Cell-Based Assays
- Immunogenicity Testing: ELISA and MSD Assays
- From Collection to Cure: How ACT Works in Cancer Immunotherapy
- Types of Cell Therapy for Cancer
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- Exploring Cell Dynamics: Migration, Invasion, Adhesion, Angiogenesis, and EMT Assays
- Cell Viability, Proliferation and Cytotoxicity Assays
- A Complete Guide to Immortalized Cancer Cell Lines in Cancer Research
- What Are CAR T Cells?
- Key Techniques in Primary, Immortalized and Stable Cell Line Development
- From Primary to Immortalized: Navigating Key Cell Lines in Biomedical Research
- Cell-Based High-Throughput Screening Techniques
- Overview of Cell Apoptosis Assays
- 3D-Cell Model in Cell-Based Assay
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- Cell Immortalization Step by Step
-
Histology
- Troubleshooting in Fluorescent Staining
- Fluorescent Nuclear Staining Dyes
- Guides for Live Cell Imaging Dyes
- Multiple Animal Tissue Arrays
- Tips for Choosing the Right Protease Inhibitor
- Instructions for Tumour Tissue Collection, Storage and Dissociation
- Overview of the FFPE Cell Pellet Product Lines
- Immunohistochemistry Troubleshooting
- Cell and Tissue Fixation
- Cell Lysates: Composition, Properties, and Preparation
- Microscope Platforms
- Overview of Common Tracking Labels for MSCs
- Mitochondrial Staining
- How to Apply NGS Technologies to FFPE Tissues?
- Comparison of Membrane Stains vs. Cell Surface Stains
- Immunohistochemistry Controls
- Stains Used in Histology
- How to Choose the Right Antibody for Immunohistochemistry (IHC)
- How to Begin with Multiplex Immunohistochemistry (mIHC)
- Common Immunohistochemistry Stains and Their Role in Cancer Diagnosis
- Serum vs. Plasma
- Comparing IHC, ICC, and IF: Which One Fits Your Research?
- What You Must Know About Neuroscience IHC?
- Multiplexing Immunohistochemistry
- Modern Histological Techniques
- How Immunohistochemistry Makes the Invisible Brain Visible?
- Histological Staining Techniques: From Traditional Chemical Staining to Immunohistochemistry
- From Specimen to Slide: Core Methods in Histological Practice
-
Exosome
- What's the Potential of PELN in Disease Treatment?
- Exosomes as Emerging Biomarker Tools for Diseases
- How to Apply Exosomes in Clinical?
- Summary of Approaches for Loading Cargo into Exosomes
- Emerging Technologies and Methodologies for Exosome Research
- How to Label Exosomes?
- How to Enhancement Exosome Production?
- How to characterize exosomes?
- How to Efficiently Utilize MSC Exosomes for Disease Treatment?
- Classification, Isolation Techniques and Characterization of Exosomes
- How to Perform Targeted Modification of Exosomes?
- How do PELN Deliver Drugs?
- Current Research Status of Milk Exosomes
- Exosome Quality Control: How to Do It?
- The Role of Exosomes in Cancer
- Techniques for Exosome Quantification
- What are the Functions of Exosomal Proteins?
- Exosome Size Measurement
- Applications of MSC-EVs in Immune Regulation and Regeneration
- Production of Exosomes: Human Cell Lines and Cultivation Modes
- Unraveling Biogenesis and Composition of Exosomes
- Exosome Transfection for Altering Biomolecular Delivery
- Exosome Antibodies
- How Important are Lipids in Exosome Composition and Biogenesis?
- Common Techniques for Exosome Nucleic Acid Extraction
- Collection of Exosome Samples and Precautions
-
ISH/FISH
- ISH probe labeling method
- Reagents Used in FISH Experiments
- Small RNA Detection by ISH Methods
- What Is the Use of FISH in Solid Tumors?
- Telomere Length Measurement Methods
- Comprehensive Comparison of IHC, CISH, and FISH Techniques
- FISH Techniques for Biofilm Detection
- Whole Chromosome Painting Probes for FISH
- Multiple Options for Proving Monoclonality
- RNAscope ISH Technology
- CARD-FISH: Illuminating Microbial Diversity
- What Types of Multicolor FISH Probe Sets Are Available?
- Mapping of Transgenes by FISH
- What are the Differences between FISH, aCGH, and NGS?
- FISH Tips and Troubleshooting
- Overview of Oligo-FISH Technology
- Differences Between DNA and RNA Probes
- Comparative Genomic Hybridization and Its Applications
- In Situ Hybridization Probes
- Guidelines for the Design of FISH Probes
- Different Types of FISH Probes for Oncology Research
- How to Use FISH in Hematologic Neoplasms?
- What are Single, Dual, and Multiplex ISH?
- Overview of Common FISH Techniques
- Multiple Approaches to Karyotyping
- ImmunoFISH: Integrates FISH and IL for Dual Detection
- 9 ISH Tips You Can't Ignore
-
Toxicokinetics & Pharmacokinetics
- Overview of In Vitro Permeability Assays
- What Are Metabolism-Mediated Drug-Drug Interactions?
- How to Improve Drug Plasma Stability?
- Pharmacokinetics Considerations for Antibody Drug Conjugates
- Traditional vs. Novel Drug Delivery Methods
- Key Considerations in Toxicokinetic
- How Is the Cytotoxicity of Drugs Determined?
- How to Improve the Pharmacokinetic Properties of Peptides?
- Organoids in Drug Discovery: Revolutionizing Therapeutic Research
- Organ-on-a-Chip Systems for Drug Screening
- Experimental Methods for Identifying Drug-Drug Interactions
- Methods of Parallel Artificial Membrane Permeability Assays
- The Rise of In Vitro Testing in Drug Development
- How to Conduct a Bioavailability Assessment?
- Predictive Modeling of Metabolic Drug Toxicity
- What Are Compartment Models in Pharmacokinetics?
- Comparison of MDCK-MDR1 and Caco-2 Cell-Based Permeability Assays
- Unraveling the Role of hERG Channels in Drug Safety
- What factors influence drug distribution?
- How to Design and Synthesize Antibody Drug Conjugates?
- What Is the Role of the Blood-Brain Barrier in Drug Delivery?
- Parameters of Pharmacokinetics: Absorption, Distribution, Metabolism, Excretion
- What are the Pharmacokinetic Properties of the Antisense Oligonucleotides?
- Key Factors Influencing Brain Distribution of Drugs
- Effects of Cytochrome P450 Metabolism on Drug Interactions
- How to Improve Drug Distribution in the Brain
- Physical and Chemical Properties of Drugs and Calculations
- Toxicokinetics vs. Pharmacokinetics
- Pharmacokinetics of Therapeutic Peptides
- What Are the Best Methods to Test Cardiotoxicity?
- Why Cardiotoxicity Matters in R&D?
-
Disease Models
- Overview of Cardiovascular Disease Models in Drug Discovery
- What Human Disease Models Are Available for Drug Development?
- Summary of Advantages and Limitations of Different Oncology Animal Models
- Why Use PDX Models for Cancer Research?
- Disease Models of Diabetes Mellitus
- Preclinical Models of Acute Liver Failure
- Animal Models of Neurodegenerative Diseases
-
Cell Biology
- Life Science Articles
- Download Center
- Trending Newsletter

