Resources
- FAQ
- Protocol
- Cell Culture Guide
- Technical Bulletins
-
Explore & Learn
-
Cell Biology
- How to Handle Mycoplasma in Cell Culture?
- Enrichment, Isolation and Characterization of Circulating Tumor Cells (CTCs)
- Strategies for Enrichment of Circulating Tumor Cells (CTCs)
- How to Assess the Migratory and Invasive Capacity of Cells?
- Multi-Differentiation of Peripheral Blood Mononuclear Cells
- Monocytes vs. Macrophages
- How to Detect and Remove Endotoxins in Biologics?
- Comparison of Different Methods to Measure Cell Viability
- CHO Cell Line Development
- How to Isolate PBMCs from Whole Blood?
- Generation and Applications of Neural Stem Cells
- Stem Cell Markers
- Troubleshooting Cell Culture Contamination: A Comprehensive Guide
- How to Isolate and Analyze Tumor-Infiltrating Leukocytes?
- Comparison of the MSCs from Different Sources
- Tips For Cell Cryopreservation
- What Cell Lines Are Commonly Used in Biopharmaceutical Production?
- T Cell Activation and Expansion
- Mesenchymal Stem Cells: A Comprehensive Exploration
- What are the Differences Between M1 and M2 Macrophages?
- Organoid Differentiation from Induced Pluripotent Stem Cells
- Quantification of Cytokines
- IL-12 Family Cytokines and Their Immune Functions
- What are Mesothelial Cells?
- How to Scale Up Single-Cell Clones?
- STR Profiling—The ID Card of Cell Line
- Comparison of Several Techniques for the Detection of Apoptotic Cells
- Contamination of Cell Cultures & Treatment
- Cell Culture Medium
- What Are Myeloid Cell Markers?
- Cryopreservation of Cells Step by Step
- Cell Cryopreservation Techniques and Practices
- Human Primary Cells: Definition, Assay, Applications
- How to Eliminate Mycoplasma From Cell Cultures?
- Critical Quality Attributes and Assays for Induced Pluripotent Stem Cells
- T Cell, NK Cell Differentiation from Induced Pluripotent Stem Cells
- Major Problems Caused by the Use of Uncharacterized Cell Lines
- Direct vs. Indirect Cell-Based ELISA
- What Is Cell Proliferation and How to Analyze It?
- Unveiling the Molecular Secrets of Adipogenesis in MSCs
- How to Decide Between 2D and 3D Cell Cultures?
- Neural Differentiation from Induced Pluripotent Stem Cells
- Isolation, Expansion, and Analysis of Natural Killer Cells
- Tumor Stem Cells: Identification, Isolation and Therapeutic Interventions
- Guidelines for Cell Banking to Ensure the Safety of Biologics
- Circulating Tumor Cells as Cancer Biomarkers in the Clinic
- CFU Assay for Hematopoietic Cell
- What are PBMCs?
- How to Start Your Culture: Thawing Frozen Cells
- Biomarkers and Signaling Pathways in Tumor Stem Cells
- Techniques for Cell Separation
- Optimization Strategies of Cell-Based Assays
- Immunogenicity Testing: ELISA and MSD Assays
- 3D-Cell Model in Cell-Based Assay
- Types of Cell Therapy for Cancer
- From Collection to Cure: How ACT Works in Cancer Immunotherapy
- How to Maximize Efficiency in Cell-Based High-Throughput Screening?
- Cell-Based High-Throughput Screening Techniques
- What Are CAR T Cells?
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- Understanding Immunogenicity Assays: A Comprehensive Guide
- 3D-Cell Model in Cell-Based Assay
- Role of Cell-Based Assays in Drug Discovery and Development
- Immunogenicity Testing: ELISA and MSD Assays
- Optimization Strategies of Cell-Based Assays
- Adherent and Suspension Cell Culture
- Organoid Drug Screening
- Key Techniques in Primary, Immortalized and Stable Cell Line Development
- From Primary to Immortalized: Navigating Key Cell Lines in Biomedical Research
- From Specimen to Slide: Core Methods in Histological Practice
- Modern Histological Techniques
- Histological Staining Techniques: From Traditional Chemical Staining to Immunohistochemistry
- Overview of Cell Apoptosis Assays
- Mastering Cell Culture and Cryopreservation: Key Strategies for Optimal Cell Viability and Stability
- Exploring Cell Dynamics: Migration, Invasion, Adhesion, Angiogenesis, and EMT Assays
- Cell Viability, Proliferation and Cytotoxicity Assays
-
Histology
- Multiple Animal Tissue Arrays
- Tips for Choosing the Right Protease Inhibitor
- Instructions for Tumour Tissue Collection, Storage and Dissociation
- Troubleshooting in Fluorescent Staining
- Fluorescent Nuclear Staining Dyes
- Stains Used in Histology
- Guides for Live Cell Imaging Dyes
- Overview of the FFPE Cell Pellet Product Lines
- Immunohistochemistry Troubleshooting
- Cell and Tissue Fixation
- Cell Lysates: Composition, Properties, and Preparation
- Microscope Platforms
- Mitochondrial Staining
- How to Apply NGS Technologies to FFPE Tissues?
- Overview of Common Tracking Labels for MSCs
- Comparison of Membrane Stains vs. Cell Surface Stains
- Immunohistochemistry Controls
-
Exosome
- Exosomes as Emerging Biomarker Tools for Diseases
- How to Apply Exosomes in Clinical?
- How to Efficiently Utilize MSC Exosomes for Disease Treatment?
- What's the Potential of PELN in Disease Treatment?
- Emerging Technologies and Methodologies for Exosome Research
- Summary of Approaches for Loading Cargo into Exosomes
- How to Perform Targeted Modification of Exosomes?
- How to Enhancement Exosome Production?
- How to Label Exosomes?
- How to characterize exosomes?
- Classification, Isolation Techniques and Characterization of Exosomes
- Exosome Quality Control: How to Do It?
- The Role of Exosomes in Cancer
- Techniques for Exosome Quantification
- Exosome Size Measurement
- What are the Functions of Exosomal Proteins?
- Applications of MSC-EVs in Immune Regulation and Regeneration
- Unraveling Biogenesis and Composition of Exosomes
- Production of Exosomes: Human Cell Lines and Cultivation Modes
- Exosome Transfection for Altering Biomolecular Delivery
- How Important are Lipids in Exosome Composition and Biogenesis?
- Collection of Exosome Samples and Precautions
- How do PELN Deliver Drugs?
- Current Research Status of Milk Exosomes
- Exosome Antibodies
- Common Techniques for Exosome Nucleic Acid Extraction
-
ISH/FISH
- What Types of Multicolor FISH Probe Sets Are Available?
- What Is the Use of FISH in Solid Tumors?
- Mapping of Transgenes by FISH
- Reagents Used in FISH Experiments
- ISH probe labeling method
- Comprehensive Comparison of IHC, CISH, and FISH Techniques
- Telomere Length Measurement Methods
- FISH Tips and Troubleshooting
- Multiple Approaches to Karyotyping
- RNAscope ISH Technology
- CARD-FISH: Illuminating Microbial Diversity
- What are the Differences between FISH, aCGH, and NGS?
- Overview of Oligo-FISH Technology
- Differences Between DNA and RNA Probes
- Comparative Genomic Hybridization and Its Applications
- Small RNA Detection by ISH Methods
- Multiple Options for Proving Monoclonality
- FISH Techniques for Biofilm Detection
- Whole Chromosome Painting Probes for FISH
- Guidelines for the Design of FISH Probes
- How to Use FISH in Hematologic Neoplasms?
- Different Types of FISH Probes for Oncology Research
- What are Single, Dual, and Multiplex ISH?
- Overview of Common FISH Techniques
- In Situ Hybridization Probes
-
Toxicokinetics & Pharmacokinetics
- How to Improve Drug Plasma Stability?
- What Are Metabolism-Mediated Drug-Drug Interactions?
- Pharmacokinetics of Therapeutic Peptides
- Toxicokinetics vs. Pharmacokinetics
- How Is the Cytotoxicity of Drugs Determined?
- How to Improve the Pharmacokinetic Properties of Peptides?
- Organoids in Drug Discovery: Revolutionizing Therapeutic Research
- Experimental Methods for Identifying Drug-Drug Interactions
- Organ-on-a-Chip Systems for Drug Screening
- Pharmacokinetics Considerations for Antibody Drug Conjugates
- Key Considerations in Toxicokinetic
- Methods of Parallel Artificial Membrane Permeability Assays
- How to Conduct a Bioavailability Assessment?
- Overview of In Vitro Permeability Assays
- Traditional vs. Novel Drug Delivery Methods
- Predictive Modeling of Metabolic Drug Toxicity
- The Rise of In Vitro Testing in Drug Development
- What Are Compartment Models in Pharmacokinetics?
- Comparison of MDCK-MDR1 and Caco-2 Cell-Based Permeability Assays
- What factors influence drug distribution?
- How to Design and Synthesize Antibody Drug Conjugates?
- Key Factors Influencing Brain Distribution of Drugs
- Effects of Cytochrome P450 Metabolism on Drug Interactions
- How to Improve Drug Distribution in the Brain
- Physical and Chemical Properties of Drugs and Calculations
- What Is the Role of the Blood-Brain Barrier in Drug Delivery?
- Parameters of Pharmacokinetics: Absorption, Distribution, Metabolism, Excretion
- What are the Pharmacokinetic Properties of the Antisense Oligonucleotides?
- Unraveling the Role of hERG Channels in Drug Safety
-
Disease Models
- What Human Disease Models Are Available for Drug Development?
- Overview of Cardiovascular Disease Models in Drug Discovery
- Preclinical Models of Acute Liver Failure
- Summary of Advantages and Limitations of Different Oncology Animal Models
- Why Use PDX Models for Cancer Research?
- Disease Models of Diabetes Mellitus
- Animal Models of Neurodegenerative Diseases
-
Cell Biology
- Life Science Articles
- Download Center
- Trending Newsletter
Protocol for RNA Extraction from Peripheral Blood Lymphocytes
GUIDELINE
Peripheral blood is often used for in vitro studies of the human immune system or immune responses, such as inflammation. Peripheral blood lymphocytes (PBL) are mature lymphocytes that circulate in the blood, rather than localizing to organs (such as the spleen or lymph nodes). They comprise T cells, NK cells, and B cells.
METHODS
- Fresh human blood was collected and leukocytes were immediately separated with Ficoll.
- PBLs were washed 3 times with ice-cold PBS.
- Collect peripheral blood lymphocytes in a 50 ml plastic centrifuge tube and add 7 ml of lysis buffer (lyses up to 5×108 PBLs), then shake vigorously with a vortex to lyse the cells.
- Add 7 volumes (49 ml) of 4 mol/L lithium chloride and incubate at 4°C for 15-20 hours (overnight).
- The suspension was transferred to a 30 ml Corex tube and centrifuged for 2 h at 6500 r/min at 4°C in a boom-type rotor.
- The supernatant was discarded and the mouth of the tube was wiped with Kimwipe. Resuspend with 3 mol/L lithium chloride (approximately 15 ml) and collect the precipitate. Centrifuge the precipitate resuspension at 6500 r/min for 1 hour.
- Discard the supernatant and lyse the precipitate with 2ml RNA lysis solution. Freeze the suspension thoroughly at -20°C.
- Resolubilize the suspension, and vortex for 20 seconds every 10 minutes for 45 minutes.
- Extract once with an equal volume of phenol and once with an equal volume of chloroform.
- Add 1/10 volume of 3 mol/L sodium acetate, pH 4.8, and 2 volumes of one 20°C ethanol. Mix the solution thoroughly and incubate at -20°C overnight.
- Centrifuge the RNA in a boom head at 12,000 r/min for 30 min. Resuspend the precipitate with 0.2 ml DEPC-treated water. Transfer the dissolved DNA to a 1.5 ml microcentrifuge tube and reprecipitate by adding 1/10 volume of 3 mol/L sodium acetate, pH 4.8, and 2 volumes of -20°C ethanol. and preserve the RNA as an ethanol precipitate until ready for use.
Creative Bioarray Relevant Recommendations
- Creative Bioarray offers services for extracting and purifying DNA or RNA from a vast array of cellular sources, from human tissues down to bacterial cells. We also provide high-quality nucleic acid extraction kits including DNA purification, RNA purification, and plasmid purification kits.
NOTES
- Centrifuge tubes, Tip tips, pipette stems and electrophoresis baths involved in the experiment, and the lab bench top should be thoroughly disposed of.
- The reagents or solutions involved in the experiment, especially water, must be ensured to be RNase-free.
- Control the starting amount of the sample.
RELATED PRODUCTS & SERVICES
For research use only. Not for any other purpose.