Immunocytochemistry (ICC) Protocol
GUIDELINE
Immunocytochemistry is a new technique for the qualitative, localized and quantitative determination of the corresponding antigens through antigen-antibody reactions and histochemical colorimetric reactions in tissue cells in situ with specific antibodies labeled with chromogenic agents. It skillfully combines the specificity of immune reaction and the visibility of histochemistry, and detects various antigenic substances (such as proteins, peptides, enzymes, hormones, pathogens and receptors) at the cellular and subcellular levels with the help of the visualization and magnification of microscopes (including fluorescent microscopes and electron microscopes).
METHODS
- Fixation. Fix samples in cold methanol, acetone for 1-10 minutes or PBS containing 3-4% paraformaldehyde pH 7.4 for 15 minutes at room temperature. Then, rinse samples twice with cold PBS.
- Permeability. Incubate samples in PBS containing 0.25% Triton X-100 (or 100 μM digitalis saponin or 0.5% saponin) for 10 minutes. Rinse cells with PBS for 3 × 5 minutes.

- Blocking and incubation. Cells are incubated in PBST with 1% BSA for 30 minutes to block non-specific binding of the antibody. Cells are co-incubated with antibody (diluted in 1% BSA in PBST) in a wet box for 1 hour at room temperature, or overnight at 4°C. Discard the liquid and rinse the cells with PBS for 3 × 5 minutes. Cells are incubated with secondary antibody in 1% BSA for 1 hour at room temperature, protected from light. Discard secondary antibody solution and rinse cells with PBS for 3 × 5 minutes, protected from light.
- Re-stain. 0.1-1 μg/ml Hoechst or DAPI (DNA stain) incubate cells for 1 min. then, rinse with PBS.
- Sealing. Add a drop of sealing solution to the coverslip to seal it. Seal the coverslip with nail polish to prevent it from drying out and move it to the microscope for observation. Store at -20 °C or 4 °C away from light.
NOTES
- Pre-incubation of the sample with 5% BSA for 10 min. prior to the primary antibody reaction may decrease background staining. For best results with animal tissues, use 5 to 10% normal serum from the same species as the host of the secondary antibody.
- Optimal dilution and incubation times should be determined for each primary antibody prior to use.
- When using AEC substrate, do not use alcohol-containing solutions for counter-staining (e.g., Harris' hematoxylin, acid alcohol), since the AEC stain formed by this method is soluble in organic solvents. The slide must not be dehydrated, brought back to toluene (or xylene), or mounted in toluene-containing mountants.
RELATED PRODUCTS & SERVICES
For research use only. Not for any other purpose.
Resources
- FAQ
- Protocol
- Cell Culture Guide
- Technical Bulletins
-
Explore & Learn
-
Cell Biology
- Strategies for Enrichment of Circulating Tumor Cells (CTCs)
- Comparison of Several Techniques for the Detection of Apoptotic Cells
- STR Profiling—The ID Card of Cell Line
- Tips For Cell Cryopreservation
- How to Isolate and Analyze Tumor-Infiltrating Leukocytes?
- Comparison of the MSCs from Different Sources
- T Cell Activation and Expansion
- How to Handle Mycoplasma in Cell Culture?
- Enrichment, Isolation and Characterization of Circulating Tumor Cells (CTCs)
- How to Assess the Migratory and Invasive Capacity of Cells?
- What Cell Lines Are Commonly Used in Biopharmaceutical Production?
- Quantification of Cytokines
- Multi-Differentiation of Peripheral Blood Mononuclear Cells
- Organoid Differentiation from Induced Pluripotent Stem Cells
- Mesenchymal Stem Cells: A Comprehensive Exploration
- What are the Differences Between M1 and M2 Macrophages?
- Biomarkers and Signaling Pathways in Tumor Stem Cells
- IL-12 Family Cytokines and Their Immune Functions
- What are Mesothelial Cells?
- How to Scale Up Single-Cell Clones?
- Techniques for Cell Separation
- Contamination of Cell Cultures & Treatment
- Cell Culture Medium
- What Are Myeloid Cell Markers?
- Cryopreservation of Cells Step by Step
- Cell Cryopreservation Techniques and Practices
- Human Primary Cells: Definition, Assay, Applications
- How to Eliminate Mycoplasma From Cell Cultures?
- Critical Quality Attributes and Assays for Induced Pluripotent Stem Cells
- What Is Cell Proliferation and How to Analyze It?
- Direct vs. Indirect Cell-Based ELISA
- Major Problems Caused by the Use of Uncharacterized Cell Lines
- T Cell, NK Cell Differentiation from Induced Pluripotent Stem Cells
- Unveiling the Molecular Secrets of Adipogenesis in MSCs
- Tumor Stem Cells: Identification, Isolation and Therapeutic Interventions
- How to Decide Between 2D and 3D Cell Cultures?
- Neural Differentiation from Induced Pluripotent Stem Cells
- Isolation, Expansion, and Analysis of Natural Killer Cells
- Guidelines for Cell Banking to Ensure the Safety of Biologics
- CFU Assay for Hematopoietic Cell
- Monocytes vs. Macrophages
- How to Detect and Remove Endotoxins in Biologics?
- Comparison of Different Methods to Measure Cell Viability
- What are PBMCs?
- How to Start Your Culture: Thawing Frozen Cells
- Circulating Tumor Cells as Cancer Biomarkers in the Clinic
- Troubleshooting Cell Culture Contamination: A Comprehensive Guide
- Generation and Applications of Neural Stem Cells
- Stem Cell Markers
- How to Isolate PBMCs from Whole Blood?
- CHO Cell Line Development
- Spheroid vs. Organoid: Choosing the Right 3D Model for Your Research
- Mastering Cell Culture and Cryopreservation: Key Strategies for Optimal Cell Viability and Stability
- Adherent and Suspension Cell Culture
- How to Maximize Efficiency in Cell-Based High-Throughput Screening?
- Understanding Immunogenicity Assays: A Comprehensive Guide
- What are White Blood Cells?
- What Are the Pros and Cons of Adoptive Cell Therapy?
- Role of Cell-Based Assays in Drug Discovery and Development
- Eosinophils vs. Basophils vs. Neutrophils
- Cultivated Meat: What to Know?
- Optimization Strategies of Cell-Based Assays
- 3D-Cell Model in Cell-Based Assay
- Immunogenicity Testing: ELISA and MSD Assays
- Optimization Strategies of Cell-Based Assays
- Immunogenicity Testing: ELISA and MSD Assays
- From Collection to Cure: How ACT Works in Cancer Immunotherapy
- Types of Cell Therapy for Cancer
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- From Blur to Clarity: Solving Resolution Limits in Live Cell Imaging
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- Exploring Cell Dynamics: Migration, Invasion, Adhesion, Angiogenesis, and EMT Assays
- Cell Viability, Proliferation and Cytotoxicity Assays
- A Complete Guide to Immortalized Cancer Cell Lines in Cancer Research
- What Are CAR T Cells?
- Key Techniques in Primary, Immortalized and Stable Cell Line Development
- From Primary to Immortalized: Navigating Key Cell Lines in Biomedical Research
- Cell-Based High-Throughput Screening Techniques
- Overview of Cell Apoptosis Assays
- 3D-Cell Model in Cell-Based Assay
- Live Cell Imaging: Unveiling the Dynamic World of Cellular Processes
- Cell Immortalization Step by Step
-
Histology
- Troubleshooting in Fluorescent Staining
- Fluorescent Nuclear Staining Dyes
- Guides for Live Cell Imaging Dyes
- Multiple Animal Tissue Arrays
- Tips for Choosing the Right Protease Inhibitor
- Instructions for Tumour Tissue Collection, Storage and Dissociation
- Overview of the FFPE Cell Pellet Product Lines
- Immunohistochemistry Troubleshooting
- Cell and Tissue Fixation
- Cell Lysates: Composition, Properties, and Preparation
- Microscope Platforms
- Overview of Common Tracking Labels for MSCs
- Mitochondrial Staining
- How to Apply NGS Technologies to FFPE Tissues?
- Comparison of Membrane Stains vs. Cell Surface Stains
- Immunohistochemistry Controls
- Stains Used in Histology
- How to Choose the Right Antibody for Immunohistochemistry (IHC)
- How to Begin with Multiplex Immunohistochemistry (mIHC)
- Common Immunohistochemistry Stains and Their Role in Cancer Diagnosis
- Serum vs. Plasma
- Comparing IHC, ICC, and IF: Which One Fits Your Research?
- What You Must Know About Neuroscience IHC?
- Multiplexing Immunohistochemistry
- Modern Histological Techniques
- How Immunohistochemistry Makes the Invisible Brain Visible?
- Histological Staining Techniques: From Traditional Chemical Staining to Immunohistochemistry
- From Specimen to Slide: Core Methods in Histological Practice
-
Exosome
- What's the Potential of PELN in Disease Treatment?
- Exosomes as Emerging Biomarker Tools for Diseases
- How to Apply Exosomes in Clinical?
- Summary of Approaches for Loading Cargo into Exosomes
- Emerging Technologies and Methodologies for Exosome Research
- How to Label Exosomes?
- How to Enhancement Exosome Production?
- How to characterize exosomes?
- How to Efficiently Utilize MSC Exosomes for Disease Treatment?
- Classification, Isolation Techniques and Characterization of Exosomes
- How to Perform Targeted Modification of Exosomes?
- How do PELN Deliver Drugs?
- Current Research Status of Milk Exosomes
- Exosome Quality Control: How to Do It?
- The Role of Exosomes in Cancer
- Techniques for Exosome Quantification
- What are the Functions of Exosomal Proteins?
- Exosome Size Measurement
- Applications of MSC-EVs in Immune Regulation and Regeneration
- Production of Exosomes: Human Cell Lines and Cultivation Modes
- Unraveling Biogenesis and Composition of Exosomes
- Exosome Transfection for Altering Biomolecular Delivery
- Exosome Antibodies
- How Important are Lipids in Exosome Composition and Biogenesis?
- Common Techniques for Exosome Nucleic Acid Extraction
- Collection of Exosome Samples and Precautions
-
ISH/FISH
- ISH probe labeling method
- Reagents Used in FISH Experiments
- Small RNA Detection by ISH Methods
- What Is the Use of FISH in Solid Tumors?
- Telomere Length Measurement Methods
- Comprehensive Comparison of IHC, CISH, and FISH Techniques
- FISH Techniques for Biofilm Detection
- Whole Chromosome Painting Probes for FISH
- Multiple Options for Proving Monoclonality
- RNAscope ISH Technology
- CARD-FISH: Illuminating Microbial Diversity
- What Types of Multicolor FISH Probe Sets Are Available?
- Mapping of Transgenes by FISH
- What are the Differences between FISH, aCGH, and NGS?
- FISH Tips and Troubleshooting
- Overview of Oligo-FISH Technology
- Differences Between DNA and RNA Probes
- Comparative Genomic Hybridization and Its Applications
- In Situ Hybridization Probes
- Guidelines for the Design of FISH Probes
- Different Types of FISH Probes for Oncology Research
- How to Use FISH in Hematologic Neoplasms?
- What are Single, Dual, and Multiplex ISH?
- Overview of Common FISH Techniques
- Multiple Approaches to Karyotyping
- ImmunoFISH: Integrates FISH and IL for Dual Detection
- 9 ISH Tips You Can't Ignore
-
Toxicokinetics & Pharmacokinetics
- Overview of In Vitro Permeability Assays
- What Are Metabolism-Mediated Drug-Drug Interactions?
- How to Improve Drug Plasma Stability?
- Pharmacokinetics Considerations for Antibody Drug Conjugates
- Traditional vs. Novel Drug Delivery Methods
- Key Considerations in Toxicokinetic
- How Is the Cytotoxicity of Drugs Determined?
- How to Improve the Pharmacokinetic Properties of Peptides?
- Organoids in Drug Discovery: Revolutionizing Therapeutic Research
- Organ-on-a-Chip Systems for Drug Screening
- Experimental Methods for Identifying Drug-Drug Interactions
- Methods of Parallel Artificial Membrane Permeability Assays
- The Rise of In Vitro Testing in Drug Development
- How to Conduct a Bioavailability Assessment?
- Predictive Modeling of Metabolic Drug Toxicity
- What Are Compartment Models in Pharmacokinetics?
- Comparison of MDCK-MDR1 and Caco-2 Cell-Based Permeability Assays
- Unraveling the Role of hERG Channels in Drug Safety
- What factors influence drug distribution?
- How to Design and Synthesize Antibody Drug Conjugates?
- What Is the Role of the Blood-Brain Barrier in Drug Delivery?
- Parameters of Pharmacokinetics: Absorption, Distribution, Metabolism, Excretion
- What are the Pharmacokinetic Properties of the Antisense Oligonucleotides?
- Key Factors Influencing Brain Distribution of Drugs
- Effects of Cytochrome P450 Metabolism on Drug Interactions
- How to Improve Drug Distribution in the Brain
- Physical and Chemical Properties of Drugs and Calculations
- Toxicokinetics vs. Pharmacokinetics
- Pharmacokinetics of Therapeutic Peptides
- What Are the Best Methods to Test Cardiotoxicity?
- Why Cardiotoxicity Matters in R&D?
-
Disease Models
- Overview of Cardiovascular Disease Models in Drug Discovery
- What Human Disease Models Are Available for Drug Development?
- Summary of Advantages and Limitations of Different Oncology Animal Models
- Why Use PDX Models for Cancer Research?
- Disease Models of Diabetes Mellitus
- Preclinical Models of Acute Liver Failure
- Animal Models of Neurodegenerative Diseases
-
Cell Biology
- Life Science Articles
- Download Center
- Trending Newsletter


