Featured Products
- Adipose Tissue-Derived Stem Cells
- Human Neurons
- Mouse Probe
- Whole Chromosome Painting Probes
- Hepatic Cells
- Renal Cells
- In Vitro ADME Kits
- Tissue Microarray
- Tissue Blocks
- Tissue Sections
- FFPE Cell Pellet
- Probe
- Centromere Probes
- Telomere Probes
- Satellite Enumeration Probes
- Subtelomere Specific Probes
- Bacterial Probes
- ISH/FISH Probes
- Exosome Isolation Kit
- Human Adult Stem Cells
- Mouse Stem Cells
- iPSCs
- Mouse Embryonic Stem Cells
- iPSC Differentiation Kits
- Mesenchymal Stem Cells
- Immortalized Human Cells
- Immortalized Murine Cells
- Cell Immortalization Kit
- Adipose Cells
- Cardiac Cells
- Dermal Cells
- Epidermal Cells
- Peripheral Blood Mononuclear Cells
- Umbilical Cord Cells
- Monkey Primary Cells
- Mouse Primary Cells
- Breast Tumor Cells
- Colorectal Tumor Cells
- Esophageal Tumor Cells
- Lung Tumor Cells
- Leukemia/Lymphoma/Myeloma Cells
- Ovarian Tumor Cells
- Pancreatic Tumor Cells
- Mouse Tumor Cells
Our Promise to You
Guaranteed product quality, expert customer support
Reduction behavior induced by HL010183, a metformin derivative against the growth of cutaneous squamous cell carcinoma
The International journal of clinical and experimental pathology. 2015, 8(1): 287.
Reduction behavior induced by HL010183, a metformin derivative against the growth of cutaneous squamous cell carcinoma
Authors: Miao G, Liu B, Guo X, et al.
PMID: 25755715
PMID: 25755715
Abstract
Metformin is a biguanide widely prescribed as a first-line antidiabetic drug in type 2 diabetes mellitus patients. Animal and cellular studies support that metformin has a strong anti-proliferative effect on various cancers. Herein, we report that metformin derivative, HL010183 significantly inhibited human epidermoid A431 tumor xenograft growth in nu/nu mice, which in turn is associated with a significant reduction in proliferative biomarkers PCNA and cyclins D1/B1. Enhanced apoptotic cell death and an increase in Bax: Bcl2 ratio supported the tumor growth reduction. The mechanism of the drug effects appears to be dependent on the inhibition of nuclear factor kappa B (NFkB) and mTOR signaling pathways. Reduced enhancement of NFkB transcriptional target proteins, iNOS/COX-2 together with decreased phosphorylation of NFkB inhibitory protein IKBa were also observed. Further, AKT signaling activation was evaluated by the reduced phosphorylation at Ser473. In addition, a concomitant decrease in mTOR signaling pathway was also estimated from the reduced phosphorylation at mTOR regulatory proteins p70S6K and 4E-BP-1. Along with this, decreased phosphorylation of GSK3b, which is carried out by AKT kinases was also observed. Overall results suggested that HL010183 interrupt SCC growth via NFkB and mTOR signaling pathways.