- Adipose Tissue-Derived Stem Cells
- Human Neurons
- Mouse Probe
- Whole Chromosome Painting Probes
- Hepatic Cells
- Renal Cells
- In Vitro ADME Kits
- Tissue Microarray
- Tissue Blocks
- Tissue Sections
- FFPE Cell Pellet
- Probe
- Centromere Probes
- Telomere Probes
- Satellite Enumeration Probes
- Subtelomere Specific Probes
- Bacterial Probes
- ISH/FISH Probes
- Exosome Isolation Kit
- Human Adult Stem Cells
- Mouse Stem Cells
- iPSCs
- Mouse Embryonic Stem Cells
- iPSC Differentiation Kits
- Mesenchymal Stem Cells
- Immortalized Human Cells
- Immortalized Murine Cells
- Cell Immortalization Kit
- Adipose Cells
- Cardiac Cells
- Dermal Cells
- Epidermal Cells
- Peripheral Blood Mononuclear Cells
- Umbilical Cord Cells
- Monkey Primary Cells
- Mouse Primary Cells
- Breast Tumor Cells
- Colorectal Tumor Cells
- Esophageal Tumor Cells
- Lung Tumor Cells
- Leukemia/Lymphoma/Myeloma Cells
- Ovarian Tumor Cells
- Pancreatic Tumor Cells
- Mouse Tumor Cells
Our Promise to You
Guaranteed product quality, expert customer support
Protective Effects of Interferon-tau Against Lipopolysaccharide-Induced Embryo Implantation Failure in Pregnant Mice
PMID:29723118
Abstract
BACKGROUND: Interferon-tau (IFN-τ), a novel type I interferon, is produced by trophoblast cells in ruminants. Previous studies have confirmed that IFN-τ could induce immunological tolerance in humans and other species. However, there are few reports on whether IFN-τ has a protective effect on embryo implantation failure caused by excessive inflammation at the maternal–fetal interface.
METHODS: In our study, a mouse model of lipopolysaccharide (LPS)-induced implantation failure was successfully established, and we investigated the protective effects of IFN-τ.
RESULTS: First, we showed that IFN-τ increased the number of implanted embryos in LPS-treated pregnant mice. Subsequently, quantitative real-time polymerase chain reaction (qPCR) and ELISA results showed that several inflammatory cytokines [IL-1β and tumor necrosis factor-alpha (TNF-α)] whose expression was upregulated by LPS were reversed by IFN-τ treatment. Furthermore, we performed Western blotting and found that IFN-τ restrained the LPS-induced phosphorylation of IκBα and NF-κB p65. Moreover, qPCR and immunohistochemistry analyses showed that IFN-τ decreased the LPS-induced expression of mouse major histocompatibility complex (MHC) class I genes (H-2K and H-2D) in LPS-treated pregnant mice.
CONCLUSION: Taken together, these results suggest that IFN-τ has a protective effect in LPS-induced implantation failure by downregulating MHC class I genes expression and inhibiting the production of inflammatory cytokines.